
FDBKeeper: Enabling Scalable Coordination Services for
Metadata Management using Distributed Key-Value Databases

Jun-Peng Zhu
East China Normal
University, China

zjp.dase@stu.ecnu.edu.cn

Lingfeng Zhang
East China Normal
University, China

fzhang.chn@outlook.com

Peng Cai
East China Normal
University, China

pcai@dase.ecnu.edu.cn

Xuan Zhou
East China Normal
University, China

xzhou@dase.ecnu.edu.cn

Peisen Zhao
East China Normal
University, China

zps@stu.ecnu.edu.cn

Xue Wang
Moqi Inc
China

xuew@myscale.com

Linpeng Tang
Moqi Inc
China

chnttlp@gmail.com

ABSTRACT

High-reliability distributed coordination services have become an

indispensable part of modern large-scale distributed systems. Pop-

ular coordination services (e.g., ZooKeeper) adopt a single-writer

design to provide a centralized service for managing system meta-

data, including various conÿguration information and data catalogs,

and to provide distributed synchronization functions. With the con-

tinuous increase in metadata size and the scale of distributed sys-

tems, these coordination services gradually become performance

bottlenecks due to their limitations in capacity, read and write

performance, and scalability.

To bridge the gaps, we propose FDBKeeper, a novel solution that

enables scalable coordination services on distributed ACID key-

value database systems. Our motivation is that transactional key-

value stores (i.e., FoundationDB) meet the demands of performance

and scalability required by large-scale distributed systems over

coordination service. To leverage these advantages, coordination

services can be implemented as an upper layer on top of distributed

ACID key-value databases. Our experimental results demonstrate

that FDBKeeper signiÿcantly outperforms ZooKeeper across key

metrics. Additionally, FDBKeeper reduces hardware resource costs

on average by 33% in the production environment, resulting in

substantial monetary cost savings. We have successfully replaced

ZooKeeper with FDBKeeper in the production-grade ClickHouse

cluster deployment.

PVLDB Reference Format:

Jun-Peng Zhu, Lingfeng Zhang, Peng Cai, Xuan Zhou, Peisen Zhao, Xue

Wang, Linpeng Tang. FDBKeeper: Enabling Scalable Coordination Services

for Metadata Management using Distributed Key-Value Databases. PVLDB,

18(12): 5004 - 5016, 2025.

doi:10.14778/3750601.3750623

PVLDB Artifact Availability:

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750623

200 400 600 800
Concurrency

0

25

50

T
hr

ou
gh

pu
t (

ko
ps

) FDBKeeper ZooKeeper

(a) Throughput

200 400 600 800
Concurrency

0.00

0.01

0.02

L
at

en
cy

 (s
) FDBKeeper

ZooKeeper

(b) Latency

Figure 1: ZooKeeper’s scalability issue when processing a

high-concurrency workload, where the ratio of reads to

writes is 9:1. For experimental settings, see Section §6.2.

The source code, data, and/or other artifacts have been made available at

https://github.com/DASE-iDDS/FDBKeeper.

1 INTRODUCTION

Coordination services such as ZooKeeper [35], etcd [31], and Con-

sul [33] have become an indispensable part of modern large-scale

distributed systems [23, 26, 34]. These systems implement complex

consistency protocols, simplify the implementation of distributed

coordination tasks, and ensure consistent and reliable shared stor-

age. They are essential for building reliable distributed systems and

reducing system complexity. However, with the rapid increase in

data size, the scale of distributed systems is expanding, and the

requirements for capacity, read/write performance, and scalability

of coordination services are increasing continuously. Consequently,

the prevalent single-primary design in coordination services is in-

creasingly becoming a bottleneck that aÿects the performance of

data systems.

Figure 1 demonstrates the ZooKeeper scalability issue under a

high-concurrencyworkload in the ClickHouse cluster. Traditionally,

ClickHouse stored only minimal conÿguration data in ZooKeeper,

resulting in low access frequency and stable performance. How-

ever, when ClickHouse started storing large volumes of metadata

(including user authentication, permissions, resource quotas, and

data ÿle metadata) in ZooKeeper [9], access frequency increased

signiÿcantly, causing performance bottlenecks.

Existing coordination services face signiÿcant challenges in

managing metadata in big data systems, especially at the exabyte

(EB) level [30]. To address this challenge, these data systems have

adopted diverse strategies. For example, systems such as Kafka [1]

choose to reduce their dependence on coordination services by

reconstructing distributed modules using the Raft protocol [42].



Cloud-native systems like Snowÿake [28] and ByConity [25] imple-

mented metadata management modules using distributed key-value

databases to address the growing demands for read and write per-

formance of metadata. Leveraging distributed transaction databases

improves adaptability to the intricate requirements of large-scale

data systems, thus improving the performance and eÿciency of

distributed coordination tasks.

The tight coupling of existing systems with prevalent coordi-

nation services (e.g., ZooKeeper) makes replacing the underlying

interface challenging, with substantial costs associated with refac-

toring. Furthermore, mature distributed databases often lack critical

capabilities for coordination services, such as ensuring the lineariz-

ability of operations and session management. These issues signiÿ-

cantly hinder the use of mature database systems as an alternative

to coordination services. Consequently, eÿorts have been made to

reimplement well-known coordination services to minimize disrup-

tion to legacy system code. However, these eÿorts continue to face

challenges in meeting performance requirements for large-scale

deployment [2, 6].

In this paper, we propose FDBKeeper, a scalable distributed co-

ordination service solution based on a distributed ACID key-value

database (i.e., FoundationDB). Several alternative distributed data-

base systems exist, including TiDB [34], CockroachDB [47], and

YugabyteDB [10]. In contrast to these alternatives, FoundationDB

provides a low-level key-value store API (oÿering primitives such

as Create and Set) that enables the construction of fully customized

metadata storage layers, whereas the aforementioned systems im-

plement SQL interfaces that provide higher levels of abstraction.

FoundationDB’s transaction system is architected speciÿcally to

process high volumes of small, rapid transactions, aligning precisely

with the characteristics of metadata operations. FoundationDB ex-

cels at high-concurrency, small random read and write operations,

which constitute the predominant access pattern for metadata man-

agement. A primary design objective of FoundationDB is delivering

consistently low latency, a critical requirement for metadata oper-

ations that frequently function as bottlenecks in query execution

pathways and demand minimal response times. FoundationDB pro-

vides a strict ACID transaction and strong consistencymodel, which

is critical for managing critical metadata. It should also be particu-

larly noted that systems such as Snowÿake also implementmetadata

management on top of FoundationDB. In comparison, a notable

feature of FDBKeeper is its compatibility with the ZooKeeper API,

which allows existing systems that rely on ZooKeeper to migrate to

FDBKeeper with minimal changes to application logic. As a result,

diÿerent systems may have diÿerences in the speciÿc implementa-

tion and operational practices of metadata management, and the

choice of solution can be made based on actual business require-

ments and technology stack. FDBKeeper facilitates smooth scaling

to larger deployments while minimizing disruption to the original

system and addressing the scalability issues of existing coordina-

tion services. We confront mainly three challenges in the design of

the proposed solution. The ÿrst challenge is how to eÿciently map

the hierarchical namespace of the coordination service based on

the key-value store. Existing coordination services often employ hi-

erarchical or multi-tier namespaces to organize diÿerent functional

modules or provide services to multiple tenants. Scalable distributed

key-value databases generally do not inherently support this map-

ping scheme. Although hierarchical namespaces can be emulated

by mapping a node UUID to key and its data contents to value, this

straightforward approach introduces transaction conÿicts (§3.1).

The second challenge is how to implement session management

based on key-value databases without introducing code intrusion.

Session management is a general feature of coordination services.

It is the foundation for building high-level services, such as ser-

vice discovery and distributed locking schemes [35]. In ZooKeeper,

it also helps to identify client faults and remove the ephemeral

nodes created by the faulty client. Each client connection has a

corresponding session. The lifecycles of all sessions can be easily

managed by the single leader, which is one of the servers in the

high-available coordination service. We aim to implement session

management without modifying the core codes of the underlying

key-value databases. There is a lack of straightforward and eÿcient

strategies to manage these complex session schemes.

The third challenge is how to implement the consistency require-

ments of the coordination service based on distributed transactional

key-value databases. Common distributed key-value databases en-

force transactions with strict serializability, whereas coordination

services typically ensure linearizability. In strictly serializable trans-

actions, the system ensures that concurrent transactions execute

in the real-time order they occur. In linearizability, operations is-

sued by a client are executed in the order they occur in real time.

Although both guarantee operations are executed in real-time or-

der, the consistency model diÿers between distributed databases

and coordination services in practice. This paper aims to achieve

the consistency model of the coordination service in distributed

systems using distributed key-value database transactions without

compromising system performance.

The main contributions of this paper are summarized as follows.

(1) Key-value-based hierarchical namespace management.

To mitigate transaction conÿicts, this paper initially ÿattens the

hierarchical namespace and subsequently decomposes the nodes

into ÿne-grained keys. Each node is converted to a series of keys

preÿxed with the node path and suÿxed with a detailed attribute

name. Based on the mapping scheme, each interface reads and

writes speciÿc keys as required, minimizing read and write conÿicts,

and thereby improving performance. (§3)

(2) Self-management of client sessions.Without modifying

the database server code, FDBKeeper explores using multiple clients

to manage sessions, including lease management, ephemeral data

cleanup, and client fault detection and recovery. (§4)

(3) Consistency model based on ACID transactions. To

guarantee the same consistency semantics in ZooKeeper, FDB-

Keeper allows multiple client nodes to determine operation order

based on transaction completion times (i.e., transaction committed

times), while single nodes maintain operation order based on their

start time. The consistency of the coordination service is ensured

through strictly serializable transactions and local lock schemes

implemented on the client nodes. (§5)

(4) Extensive experimental performance evaluation. A sys-

tem called FDBKeeper, which is compatible with the ZooKeeper

interface, is implemented based on the open-source FoundationDB

database. The performance of the overall scheme is evaluated on this



Figure 2: The cluster system overview with FDBKeeper.

Figure 3: An example of a ÿne-grained mapping.

system, and its eÿectiveness is validated by replacing the ZooKeeper

component in the ClickHouse cluster across diÿerent scenarios. (§6)

2 THE SYSTEM OVERVIEW

The overall architecture of the system using FDBKeeper, as shown

in Figure 2, is divided into four layers. It should be noted that

FDBKeeper is integrated into each ClickHouse instance as a static

library. The ÿrst layer (") is the ZooKeeper interface layer, which

provides a C++ interface compatible with the ZooKeeper request

format and interconnects with the lower functional modules.

The second layer (3) is the core functional module layer of co-

ordination services, consisting of hierarchical namespace manage-

ment (§3), session management (§4), and the consistency model (§5).

The hierarchical namespace management module primarily facil-

itates mapping between the nodes and the key-value model. The

session management module monitors client activity, distinguishes

between regular and ephemeral nodes, and removes ephemeral

nodes upon detecting client failures. These functions are imple-

mented based on the FDB. The consistency model ensures the

coordination service’s consistency by enforcing strict serializabil-

ity (supported by FDB) and local locking schemes (supported by

FDBKeeper) while optimizing client performance through batch

processing of multiple operations.

The third layer (/) is the coroutine framework, which provides

asynchronous interfaces for the upper layers, such as the FDB

interface, delay, and abort transactions. It utilizes coroutines to min-

imize thread performance overhead, conceal thread scheduling, and

simplify programming complexities. FDBKeeper enhances client

concurrency and reduces resource usage by utilizing coroutines,

which prevent excessive thread consumption in high-concurrency

scenarios. The fourth layer (Ã) is the database layer, where all

persistent data from the coordination service is stored in FDB.

3 KEY-VALUE BASED HIERARCHICAL
NAMESPACE MANAGEMENT

In this section, we ÿrst analyze the challenges to mapping a node

in the hierarchical namespace (§3.1) Then, we present the design

of eÿcient ÿne-grained mapping schemes (§3.2).

3.1 Problem Analysis

A straightforward approach, similar to metadata management in

traditional distributed ÿle systems [41], is to use the generated

UUID of the node as the key and theMeta + Data of this node as the

corresponding value. There are three challenges in implementing

this mapping in FDB.

•Hot Spots. It is necessary to modify the metadata of the parent

node when creating or removing its child nodes. For example, the

operations of Create(/a/b) and Remove(/a/c) under the same parent

node (i.e., /a) introduce transaction conÿict since they all modify

the metadata of this parent node. Thus, in the case that frequently

creating or removing child nodes, it may generate hot spots on the

parent node.

• Query Latency. Retrieving the nodes in deep paths requires

multiple queries. For example, to ÿnd the data in /a/b/d, it is required

to ÿrst ÿnd the UUID of /b from the value of /a. Then, the UUID of

/d is found from the data of /b. Performing multiple reads from the

KV store increases query latency.

• Redundant Metadata. Most operations involve only a small

fraction of the metadata. For example, the operations of Watch List,

Watch Get, and Watch Exists monitor only the version and cversion

ÿelds [12]. Storing all metadata and data under a single value causes

certain operations to retrieve redundant information from the KV

store, leading to additional overhead.

3.2 Fine-grained Mapping

Based on the above considerations, we classify the node metadata

and data mapping into the following three key categories. Let us

illustrate these three categories with an example as shown in Fig-

ure 3.

• The CHILD key represents the list of child nodes, consisting

of the parent node path name and the node’s name. For example,

the CHILD key of /a/b/c is /a/b + CHILD + c. List is a frequently

used operation. Under this design, all child nodes of a given parent

node can be retrieved by one Range query call in FDB.

• The META key stores metadata other than dataLength. Fields

like pzxid, numChild, version, and cversion are stored using a sin-

gle key. The metadata ÿelds czxid and ctime, as well as mzxid and

mtime, are each individually combined into one key because they

are alwaysmodiÿed simultaneously. For example, the creatingmeta-

data KV pair for /a/b is /a/b + META + CREATE → <ctime, czxid>,

and ctime and czxid form a 128-bit integer.

• The DATA key represents the data, including dataLength and

data. For example, the data key-value pair for /a/b is /a/b + DATA

→ dataLength + data. Due to the length limitations of some KV

databases, larger data values are split into multiple segments. For

example, ZooKeeper enforces a maximum value size of 1 MB, and

FDB imposes a 100 KB limit, requiring the implementation of value

segmentation in FDBKeeper when the threshold is exceeded. When

the value exceeds 100 KB, FDBKeeper splits it into multiple continu-

ous keys and stores them in the FDB, which uses a distributed B-tree

storage architecture based on SQLite. B-tree is particularly well-

suited for range queries due to its ordered structure and eÿcient

sequential access properties. For example, a 300 KB value is split

into multiple consecutive 100 KB KV pairs, i.e., “preÿx/seg1”: 100 KB

value, “preÿx/seg2”: 100 KB value, and “preÿx/seg3”: 100 KB value.

Each segment key is stored consecutively, with no other keys in



Algorithm 1: Create Lease

Data: Expiration Time: >DC30C4_8=C4AE0;

Result: Client ID: 2;84=C_83 , Lease Key: ;40B4_:4~

1 Transaction:

2 Loop:

3 2;84=C_83 ← A0=3>< D=B86=43 8=C64 ;

4 4G8BC ← Get(CLIENT + client_id) ;

5 if 4G8BC then continue;

6 Set(á!�ã#) + 2;84=C_83) ;

7 break;

8 >DC30C4 ← =>FC8<4BC0<? + >DC30C4_8=C4AE0; ;

9 ;40B4_:4~ ← !ã�(ã + >DC430C4 + 2;84=C_83 ;

10 Set(;40B4_:4~, NULL) ;

Algorithm 2: Update Lease

Data: Lease Refresh Time: A4 5 A4B;_8=C4AE0; , Expiration

Time: >DC30C4_8=C4AE0; , Client ID: 2;84=C_83 , Lease

Key: ;40B4_:4~

Result: Lease Key: ;40B4_:4~

1 Loop:

2 Transaction:

3 Wait A4 5 A4B;_8=C4AE0; ;

4 4G8BCB ← Get(;40B4_:4~) ;

5 if =>C 4G8BC then break;

6 Clear (;40B4_:4~) ;

7 >DC30C4 ← =>FC8<4BC0<? + >DC30C4_8=C4AE0; ;

8 ;40B4_:4~ ← !ã�(ã + >DC430C4 + 2;84=C_83 ;

9 Set(;40B4_:4~, NULL) ;

between. When querying, the range uses the "preÿx/seg*" pattern.

These segments are stored consecutively in the B-tree, prevent-

ing signiÿcant performance degradation. On the other hand, FDB-

Keeper ensures the atomicity of this multi-segment write through

one FDB transaction, ensuring no correctness issues.

The constants in key names such as CHILD, META, and DATA

are enumerated and represented by a byte. The operation for each

node is implemented as a transaction in FDB, where all FDB read

and write operations are performed within a transaction

This ÿne-grained mapping strategy does not fully address the

issue of hot spots in the parent node when nodes are created or

removed simultaneously under the same parent. In the node meta-

data, the pzxid ÿeld records the transaction ID which indicates the

last modiÿed timestamp, while cversion and numChild are counters.

FDBKeeper uses atomic operations in FDB [51], capable of pushing

operations like ± 1 (i.e., counter plus or minus one) and updating

on pzxid down to the storage layer to further alleviate conÿicts in

the transaction layer.

Figure 4: An illustration of accuracy issues in local time.

4 SESSION MANAGEMENT

4.1 Fault Client Detection

Leases are widely used in distributed systems for node failure detec-

tion. In typical coordination services, a single primary node mon-

itors the client’s heartbeat, detects failures, and clears the faulty

client. However, this approach requires modiÿcations of the FDB

servers to implement lease management for FDBKeeper. Instead,

we implement the logic of the lease on the client-side based on the

FDB transaction. Each client creates a lease key in FDB at startup

and then periodically updates the lease key. A lease key consists

of three parts: a preÿx that indicates that it is a lease key, a 64-bit

expiration timestamp, and a 64-bit client ID.

Algorithm 1 outlines the procedure for creating a lease using

an FDB transaction. In creating a lease transaction, a 64-bit ID

for the client is ÿrst generated randomly locally. The client key

is used in the database to record already occupied IDs to ensure

uniqueness. If an ID for a client is found to be occupied, a new

one is generated until there are no conÿicts. Then, the expiration

timestamp is calculated from the local current timestamp and the

expiration time, and the expiration timestamp and the client ID are

combined as the lease key. Finally, the new client key and the lease

key are submitted. After a lease is created, the client periodically

updates the lease. As shown in Algorithm 2, the old lease key’s

existence is ÿrst checked in the updating lease transaction. If it

exists, the old lease key is deleted, and a new lease key is created to

replace it. If the lease does not exist, it is deemed invalid, and the

client is subsequently terminated.

To quickly ÿnd expired leases, the lease key is preÿxed with the

big-endian order of the expiration time, allowing the lease keys to

be incrementally sorted by expiration time. When querying expired

leases, it only needs to search for keys with strings smaller than

LEASE + big-endian order of the current timestamp to ÿnd all expired

client IDs. Such queries are eÿcient in FDB primarily because: (1)

FDB employs a distributed B-tree storage architecture based on

SQLite, where the ordered and balanced properties of B-trees enable

range query operations with O(log N + K) time complexity, where

N is the total number of records and K is the result set size; (2) our

lease key design ensures leases are stored in expiration time order

within the B-tree, reducing expired lease retrieval to a single range

scan operation; (3) the ordered nature of B-tree internal nodes guar-

antees eÿcient sequential access, with leases of adjacent expiration

times exhibiting good storage locality, allowing range queries to

fully leverage sequential I/O advantages at the storage layer while

avoiding random access overhead. Furthermore, keys serve as a

natural index, eliminating the need for additional secondary index

structures and thereby simplifying system design while enhancing

query eÿciency. However, there is a drawback in using the client’s

local time to determine expired leases. When the local time is later

than the true time in Figure 4 (a), the client cannot obtain a lease,

and when the local time is earlier than the true time in Figure 4 (b), it



Figure 5: Ephemeral node

index.

Figure 6: An illustration of the

FIFO client order in FDBKeeper.

is impossible to correctly determine the activity of the client. There-

fore, our policy is based on synchronizing individual client time

and requires the lease timeout to be greater than 2× the maximum

time error. Considering that the clients of the coordination service

are usually distributed systems, it is relatively easy to require time

synchronization. Common time synchronization protocols, such as

NTP, can keep time errors within milliseconds, which is acceptable

for coordination services.

4.2 Ephemeral Node Management

Coordination services require distinguishing between ephemeral

nodes and persistent nodes. The ephemeral node lifecycle is bound

to the client and is automatically deleted upon client termination or

failure. The persistent nodes persist even after the client terminates.

The scenarios that must be considered for the management of

ephemeral data include creating ephemeral nodes, obtaining node

types (e.g., Get and List operations), and batch removing ephemeral

nodes belonging to a certain client ID. As shown in Figure 5, to

meet the requirements of these three scenarios, ephemeral data

management records the client ID in the node metadata and adds

a set of indexes to quickly query the ephemeral nodes associated

with a single client ID. When removing ephemeral nodes in batches,

it scans the ephemeral node keys preÿxed with EPHM+client_id to

obtain the paths of all the ephemeral nodes and then removes the

metadata keys and data keys of those nodes.

4.3 Fault Client Cleanup

A client is elected as the leader to clean other faulty clients whose

leases have expired. When a client is started, the cleaning election

is also started at ÿxed intervals to elect a client as the cleaning

leader. To mitigate election conÿicts among diÿerent clients, the

interval between each election is extended randomly by a certain

amount of time. As shown in Algorithm 3, the expiration time of the

current cleaning leader is obtained in the key CLEANER (Step 4).

If the current cleaning leader has not expired (Step 5), the module

of cleaning expired leases attempts to elect a client as cleaner after

waiting for cleaner_interval. To prevent high conÿict, a random

period is added between each election (Step 2). The election process

sets the expiration time of the current cleaner in the cleaner key

if the cleaner has expired (Step 7). Because local time may be out

of synchronization, which is similar to the lease implementation

in Section §4.1, the election algorithm cannot guarantee that only

one cleaner is running on the system. Therefore, this issue needs

to be considered during the cleanup process.

During the lease cleaning process, the expired lease key is ÿrst

queried in a transaction to identify potentially failing clients. The

ephemeral nodes belonging to these clients are then located and

Algorithm 3: Cleanup Expired Lease

Data: Cleaning Interval: 2;40=4A_8=C4AE0; , The upper limit

of the number of expired leases: 10C2;_;8<8C

1 Loop:

2 Wait 2;40=4A_8=C4AE0; ± A0=3><;

3 Transaction:

4 >DC30C4 ← Get(CLEANER);

5 if The previous cleaner is active then continue;

6 >DC30C4 ← =>F C8<4BC0<? + >DC30C4_8=C4AE0; ;

7 Set(CLEANER, >DC30C4) ;

8 Transaction:

9 >DC30C4_;40B4B ← Get expired leases;

10 Loop:

11 Transaction:

12 = ← 0;

13 while = < 10C2;_;8<8C do

14 ;40B4_:4~ ← �8ABC (>DC30C4_;40B4B);

15 if ;40B4_:4~ not exist then break;

16 update ;40B4_:4~, Set the expiration time 0;

17 ?0C;B ← Get ephemeral nodes;

18 if ?0C;B not NULL then

19 = ← ;4=(?0C;B) + =;

20 foreach ?0C;B do Remove node;

21 else

22 %>? (>DC30C4_;40B4B);

23 Clear(;40B4_:4~)

removed. The cleanup is divided into multiple transactions, and

each transaction cleans up to the batch_limit of ephemeral nodes,

typically set to 100, which corresponds to approximately 15, 000

keys. The purpose of limiting the number of cleaned keys is to

prevent long transactions and to help quickly identify conÿicting

cleaners. When the cleanup task starts to clean up a client, it ÿrst

queries whether the lease key exists or not; if the lease key does

not exist, there are two possible scenarios: there is a delay in the

client, or the client has been deleted by other cleaners, i.e., there

is more than one cleaner in the system. For both cases, it can be

assumed that the cleaner has failed, so the cleanup process ends,

and the next election is awaited. If the lease key exists, its expiration

time is reset to zero. Ephemeral nodes are not directly removed

because the cleanup task is split into multiple transactions. If a

failure occurs during the cleaning process, subsequent cleaners can

still detect uncleaned leases. Then, the cleaner queries and removes

the ephemeral nodes associated with the client. If no ephemeral

nodes are found, the cleanup is considered complete.

It is essential to note that by appropriately conÿguring the

CLEANER election interval and the expiration period of ephemeral

nodes, where the election interval is typically shorter than the expi-

ration period, the system establishes a fundamental fault-tolerance



window for handling CLEANER failures. In addition, the cleanup

process is designed to be idempotent and batched. Even if repeated

CLEANER failures occur, subsequent CLEANERs can detect and

compensate for any unÿnished cleanup tasks from previous failed

CLEANERs. In conclusion, these mechanisms eÿectively prevent

the issue of the system being unable to eÿciently clean fault clients

due to the prolonged absence of an eÿective cleaner. In Moqi’s

production deployment, we set the CLEANER election interval to

2 seconds and the expiration period of ephemeral nodes (i.e., the

Zookeeper connection timeout) to 4 seconds, achieving robust fault

tolerance and system stability.

5 CONSISTENCY GUARANTEES

5.1 Problem Analysis

ZooKeeper oÿers two basic ordering guarantees [35]. The ÿrst is to

guarantee linearizable writes issued by all clients. These concurrent

writes are serialized by the leader node under the Zab protocol [36].

ZooKeeper guarantees linearizability across all clients once requests

arrive at ZooKeeper. However, in practice, the time it takes for re-

quests from the client to reach ZooKeeper is not guaranteed. In

ZooKeeper, each client can have multiple outstanding operations.

The second guarantee is the FIFO client order, where all the opera-

tions of a given client are executed according to the sending order

via a single TCP connection between the client and the ZooKeeper

server. The FIFO client orders can ensure the correct execution of

Create(/a), Create(/a/b) and Create(/a/b/c) sequentially called by a

client, although the three requests are sent asynchronously.

FDB does not provide a guarantee of the FIFO client order. In

FDBKeeper, each ZooKeeper operation is implemented by the FDB

transaction. FDB currently does not support transactions exceeding

ÿve seconds [17]. When ZooKeeper operations are implemented as

FDB transactions in our production environment, they exclusively

involve metadata operations. We have not observed any perfor-

mance constraints related to the ÿve-second transaction duration.

When an FDB client sends three transactions in the order that is

Create(/a), Create(/a/b) and Create(/a/b/c), FDB cannot guarantee

the execution and commit of the three transactions in the sending

order. The transaction Create(/a/b) may be scheduled to execute

before the transaction Create(/a) is committed. In this case, Cre-

ate(/a/b) failed because the parent node (i.e., /a) of /a/b has not

been created by Create(/a). In a word, FDB cannot ensure all three

Create transactions sent by a client are successfully executed every

time, as the transaction is not executed one after the other in the

sending order. On the other hand, ZooKeeper ensures the three

Create requests sent by a client are sequentially applied to the state

of the hierarchical namespace. From ZooKeeper’s perspective, the

time ZooKeeper sends a request should align with when FDB be-

gins a transaction. That is, all three requests are always executed

successfully in ZooKeeper.

For multiple clients or sessions, ZooKeeper implements update

linearizability, which is naturally guaranteed by strict serializabil-

ity [7, 51] in FDB. Each update request corresponds to an FDB

transaction. In FDBKeeper, it is necessary to align ZooKeeper’s

receive order of operations with FDB’s transaction commit time.

FDB uses a single sequencer to assign the commit number to each

committed transaction. Transactions are serialized according to

their commit numbers.

5.2 FIFO client Order in FDBKeeper

To support the FIFO client order, FDBKeeper uses three types of

locks on the client side to control how the transactions sent by a

client are scheduled on the server side.

Object read lock. The granularity of a lock is a node in the

hierarchical namespace. A read lock is a shared lock. The operations

sent by a client are allowed to start the corresponding transactions

concurrently if these operations have just the same read locks.

Object write lock. The granularity is the same as the read lock.

A write lock is exclusive. If several operations sent by a client

need to request the same write locks, FDBKeeper allows only one

operation that holds the write lock to start a transaction. Read and

write locks ensure the FIFO client order of accessing a single object.

Commit lock. It is used to control the order of transaction

commits. In an FDBKeeper client, all its initiated transactions are

required to request the commit lock. Essentially, the commit lock

can be regarded as a FIFO queue. The commit lock ensures that

all write operations in this FDBKeeper client are committed in the

order in which they are sent. Transactions that have no write lock

conÿict and just wait for the same commit lock can be concurrently

executed by the FDB server-side. The FIFO client order of write

operations is guaranteed by the locking scheme of each client and

the serializability in the FDB server.

Figure 6 illustrates how an FDBKeeper client uses the locking

scheme to control the start and commit of the transaction. The

vertical axis represents the order in which local operations are sent,

and the horizontal axis represents the order in which corresponding

transactions are started and committed. The ÿgure uses r(x) for the

read lock, w(x) for the write lock, and c for the commit lock. In the

transaction legend, the white portion represents the transaction

execution process, while the black portion represents the commit

process. The operations of Create(/a), Create(/a/b), Create(/a/b/c),

and Get(/a/b/c) are executed sequentially in terms of their conÿicted

read and write locks. The operations Get(/a/b) and Create(/a/b/c)

share read locks, allowing them to execute simultaneously. Due

to the commit lock, all operations are committed in the sending

order. In particular, the three types of locks in FDBKeeper are essen-

tially client-scoped, in-memory locks that exist only within each

client process’s local memory, designed to maintain FIFO ordering

of operations within a single client session rather than serving as

traditional distributed locks that require cross-client coordination.

Each client maintains its own independent set of locks, and the

failure of one client does not impact the lock state or operation ex-

ecution of other clients. When a client fails, these in-memory locks

are automatically cleaned up as the process terminates, requiring

no explicit recovery mechanism because these locks exist only in

the failing client’s memory space, and no other clients depend on

or are blocked by these locks.

In an FDBKeeper client, each operation adopts a strict two-phase

locking (2PL) policy. To avoid deadlock, all operations in wait form

a logically directed acyclic graph (DAG) (i.e., precedence graph

or dependency graph [46]). The DAG represents the dependency

relationship among operations with various locking requests. Given

the input parameter in an operation (e.g., /a/b as the parameter for

Create(/a/b)), it is straightforward to calculate all the required read

and write locks. Thus, before operating on an object, the FDBKeeper



client calculates all necessary locks to be acquired and then adds

the operation to the DAG. The DAG is sorted according to the

lock type of each operation, and new operations are appended to

the end of the DAG. If an operation has no dependency on any

other operations, it is executed immediately. After its execution is

completed, the operation is removed from the DAG, allowing the

next operation without dependency to proceed. FDBKeeper can

guarantee the linearizability of operations by combining the strict

serializability of FDB with client-side locking schemes. We provide

formal proof of linearizability in our technical report [20].

It should be noted that the DAG we use primarily ensures the

FIFO order of operations within the same client session, rather than

serving as a global order mechanism. This means that the complex-

ity of the DAG primarily depends on the number of concurrent

operations within a single session, rather than on the overall work-

load of the cluster. In typical coordination service usage scenarios,

the concurrent operations within a single client session are usu-

ally limited because most applications follow the request-response

interaction pattern. Therefore, the number of nodes and the com-

plexity of edges in the DAG are controllable in practical scenarios.

Additionally, in the large-scale application of the Moqi Inc. business,

we have not encountered any bottleneck issues with the DAG.

It is important to emphasize that the DAG mechanism in FDB-

Keeper is strictly used to maintain the execution order of operations

within a single client session rather than creating dependency-

waiting relationships between operations. When a client-initiated

operation involves a non-existent parent node (such as Create(/a/b)

when /a does not exist), FDBKeeper follows standard ZooKeeper

semantics by immediately returning a NoNode error to the client,

rather than having the operation wait for parent node creation.

The DAG’s role is solely to ensure that operations within the same

session are processed and committed in the order sent by the client,

rather than creating waiting mechanisms based on the logical de-

pendencies of node paths. This design avoids operation blocking

due to path dependencies, ensuring that each operation receives

a deÿnitive result (success or failure) immediately based on the

current system state, thereby guaranteeing system responsiveness

and predictability.

5.3 Batch Processing Optimization

We ensure coordination service consistency by controlling the

started and committed times of transactions. However, waiting

for transactions to complete sequentially signiÿcantly increases

the overall operation latency. Therefore, in addition to locks, the

consistency module merges and reduces the number of waiting

operations. Operation merging occurs when an operation is added

and removed from the DAG. For example, when a Get operation

follows a Create operation, they are merged into a single Create

operation transaction. The results of multiple operations are then

returned immediately after the create operation transaction is com-

pleted. There are two merge strategies for object read/write locks

and transaction (commit) locks:

(1) Merge transactions based on the number of pending

write operations. Conÿgure # to merge multiple write operations

into a single transaction, committing them all at once. As shown

in Figure 7, the operations of Create(/a), Create(/a/b), Create(/a/b/c),

and Create(/a/d) are merged into a single transaction. These four

Figure 7: An illustration of

merging multiple writes in a

single transaction.

Figure 8: An example of

heuristic rules that combine

multiple operations.

operations are atomically written to the database in a single trans-

action. Merging multiple write operations reduces the number of

transactions, thus decreasing the overall average latency.

(2) For object read and write locks, heuristic rules combine

two operations into one. As shown in Figure 8, the Create and

Get operations are combined into a single CreateOrGet operation,

which ÿrst attempts to Get the object, Create object it if it does not

exist, and returns the results of both Create and Get. Although there

are many potential rules, the performance gains from this merg-

ing strategy are limited because multiple operations on a single

object are not typically initiated simultaneously. Currently, only

two heuristic rules are added for speciÿc scenarios: Create+Get and

Create+Create. In scenarios with many concurrent cascading opera-

tions, root nodes are frequently created. These creation operations

are executed sequentially, so when the same objects are created

simultaneously, they are merged into a single Create operation. The

ÿrst Create operation is executed normally, and subsequent Cre-

ate operations fail immediately without a transaction. FDBKeeper

preserves linearizability guarantees despite implementing batch

processing optimizations. We also provide formal proof in our tech-

nical report [20].

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup

6.1.1 System. The experiments utilize ZooKeeper 3.9.1 and Open-

JDK 1.8.0392. The cluster consists of one leader node, two follower

nodes, and two observer nodes. Each ZooKeeper node sets max-

ClientCnxns to 0 to disable client connection limits and increase

the maximum heap memory of the JVM to 15GB (i.e., -Xmx = 15G)

to prevent memory insuÿciency.

The experimental evaluation utilizes FDB version 7.1.27 in this

paper. FDB requires manual conÿguration of the process count and

roles, with each process utilizing up to one CPU core. In this exper-

iment, a node acts as a coordinator, conÿgured with 1 coordinator

process, 1 transaction process, and 4 storage processes. The other

four nodes are conÿgured with 1 transaction process, 6 storage

processes, and 2 stateless processes each. In total, there are 1 coor-

dinator process, 5 transaction processes, 28 storage processes, and

8 stateless processes. FDB utilizes a 3-copy SSD engine (conÿgured

as a new triple SSD).
6.1.2 Environment. The experiments run on KVMvirtualized cloud

hosts. A total of 9 to 11 cloud hosts are allocated, with 4 designated

for clients and the remaining hosts allocated to servers. Each cloud

host features a 4-core Intel Broadwell CPU running at 2.2GHz,

along with 16GB of RAM. The servers utilize SATA SSDs for storing

experimental data, boasting a 4k random read performance of 187k

IOPS and a 4k random write performance of 24k IOPS. The cloud



hosts are connected through a 10 Gbps Ethernet network. These

cloud hosts are running 64-bit Ubuntu 22.04.

6.1.3 Benchmarks. This paper rewrites and extends the Click-

House keeper-bench [44] to support experiments that simulate

high-concurrency scenarios. This enhancement enables handling

richer workloads and surpassing the single-machine limit by simu-

lating over 1, 000 clients concurrently on multiple hosts. The exper-

iment is orchestrated using a series of Ansible and Python scripts.

Initially, the keeper-bench is built and deployed on 4 cloud hosts as

clients along with the workload proÿle. Subsequently, servers 1 to 9

are initialized: the original services are stopped, experimental hard

disks are cleared, the ext4 ÿle system is formatted, and a ZooKeeper

or FDB cluster is deployed. Except for the scalability experiment,

all other experiments utilized ÿve hosts as servers.

Multiple keeper-bench processes are evenly distributed across

the client hosts. The experiment adjusted the number of keeper-

bench processes based on the concurrency level, with each keeper-

bench process simulating 100 clients. Furthermore, every 10 client

coroutine shares a single thread. The keeper-bench utilizes a YAML

ÿle to deÿne workloads, each comprising two primary phases:

• Data initialization phase. During the data initialization

phase, a hierarchical namespace deÿnition generates data of ar-

bitrary depth with random names and content. In this phase, the

keeper-bench processes concurrently execute Create requests to

FDBKeeper or ZooKeeper.

• Testing phase. This phase, deÿned by a list, supports opera-

tions like Create, Set, Get, and others at any path, with the capability

to specify weights. One or more keeper-bench processes are ex-

ecuted in parallel, each operating independently without mutual

interference.

To verify the performance of FDBKeeper under diÿerent work-

loads, we also utilized ÿve YCSB [21, 32] workloads: A (w:50%,

r:50%), B (w:5%, r:95%), C (read-only), D (read latest, w:5%, r:95%),

and F (w:25%, r:75%). We do not use YCSB-E primarily because

ZooKeeper does not support range queries. All experiments are

conducted with a degree of concurrency of 2000.

6.1.4 Evaluation Metrics. This section employs various methods

to collect diÿerent monitoring indicators as evaluation metrics. It

primarily covers the following aspects:

• The node exporter [4] is used to collect hardware performance

metrics, including CPU, memory, hard disk, and network usage. It

calculates maximum CPU memory overhead, disk I/O performance,

disk capacity, and network utilization.

• Enable ZooKeeper’s built-in Prometheus [5] metric provider

on each server to collect JVM memory metrics, ensuring memory

is not a performance bottleneck for ZooKeeper.

• The status json command in fdbcli collects FDB cluster metrics

on a single client, extracts and converts them into Prometheus met-

rics, and pushes them to the Pushgateway [8] every second. The

collected metrics include process CPU usage, transaction phase

latency, transaction rate, collision rate, and QoS automatic perfor-

mance limits, which help identify FDB performance bottlenecks.

• Each keeper-bench process records the number of waits, com-

pletions, and errors for diÿerent operations, along with total latency.

It calculates the 10%-90% and 99%-99.9% percentile latencies, then

extracts and converts these metrics to Prometheus metrics at 1-

second intervals to push to the Pushgateway.

150 200 400 600 800 1000
Concurrency

0
10
20
30
40
50
60

T
hr

ou
gh

pu
t (

ko
ps

)

FDBKeeper
ZooKeeper

(a) Throughput

150 200 400 600 800 1000
Concurrency

0.00

0.01

0.02

L
at

en
cy

 (s
)

(b) Latency

Figure 9: Performance when reads-to-writes is 9:1.

0 102030405060708090100
Read Ratio (%)

0
10
20
30
40
50
60
70
80
90

100

T
hr

ou
gh

pu
t (

ko
ps

)

FDBKeeper
ZooKeeper

(a) Throughput

0 102030405060708090100
Read Ratio (%)

0.000

0.025

0.050

0.075

0.100

L
at

en
cy

 (s
)

(b) Latency

Figure 10: Performance on the diÿerent read ratios.

Finally, Prometheus captured and calculated all monitoring in-

dicators, while Grafana [3] further aggregated and visualized the

experimental results. The experimental evaluation code is available

at https://github.com/DASE-iDDS/FDBKeeper-Evaluation.

6.2 Performance Comparison

Weevaluated the throughput and latency of FDBKeeper and ZooKeeper

at diÿerent levels of concurrency, as illustrated in Figure 9. The ex-

perimental evaluation utilizes a common ZooKeeper workload [11,

35], where the ratio of reads to writes is 9:1. Speciÿcally, 81% of the

operations are Get, 9% are List, 4% are Set, 3% are Create, and 3% are

Remove.

With increasing concurrency, the throughput of both FDBKeeper

and ZooKeeper also increases. For concurrency levels below 400,

FDBKeeper exhibits lower throughput compared to ZooKeeper.

Moreover, FDBKeeper’s single operation has a minimum latency of

about 3 ms, while ZooKeeper achieves approximately 1 ms. Both

read-only and write transactions of FDB need to communicate with

multiple nodes, which leads to multiple network communications

and limits the minimum latency. In contrast, ZooKeeper has a max-

imum of 2 RPC operations. When the concurrency reaches 200,

ZooKeeper’s throughput no longer increases signiÿcantly due to

the single-point bottleneck. On the other hand, FDBKeeper can

fully utilize the advantages of FDB to achieve higher throughput

under high concurrency. At 800 concurrency, the throughput of FD-

BKeeper reaches about 60 kops. These results demonstrate that, un-

der a typical ZooKeeper workload, the throughput of FDBKeeper in-

creases gradually with increasing concurrency, whereas ZooKeeper

reaches its throughput ceiling. However, in low-concurrency sce-

narios, ZooKeeper is more responsive.

There is a signiÿcant disparity in the time consumed between

read and write operations. The read-write ratio of the workload has

a signiÿcant inÿuence on the throughput of the coordination ser-

vice. We evaluated the performance of FDBKeeper and ZooKeeper

in diÿerent read/write scenarios, as shown in Figure 10. The evalu-

ations encompass workloads spanning from 0% read operations to

100% read operations. In read operations, 90% are Get operations

and 10% are List operations. In write operations, operations are



110100 500 1000
Concurrency

0

10

20

30

T
hr

ou
gh

pu
t (

ko
ps

)

FDBKeeper
ZooKeeper

(a) Throughput

110100 500 1000
Concurrency

0.00

0.02

0.04

0.06

L
at

en
cy

 (s
)

(b) Latency

110100 500 1000
Concurrency

0

5

10

15

20

C
PU

 U
til

iz
at

io
n

(c) CPU Utilization

110100 500 1000
Concurrency

0
5

10
15
20
25
30
35

M
em

or
y 

U
sa

ge
 (G

B
)

(d) Memory Usage

Figure 11: Performance comparison on the ClickHouse workload.

0.0
0.5
1.0
1.5
2.0
2.5

�
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

10.1k 67.6k 98.5k 52.3k 15.3k

±+127.9%

³-3.7% ³-7.8% ³-3.1%

±+82.7%

A
w:50%
r:50%

B
w:5%
r:95%

C
w:0%

r:100%

D
w:5%
r:95%

F
w:25%
r:75%

ZooKeeper
FDBKeeper

Workload

Figure 12: Throughput

performance on YCSB.

divided evenly: 33.3% for Set, 33.3% for Create, and 33.3% for Remove.

The experiment simulates 800 concurrent clients to evaluate the

maximum throughput of the system.

As the percentage of read requests increases, the throughput of

both FDBKeeper and ZooKeeper tends to increase. In the read-only

scenario, that is, at 100% read, ZooKeeper achieves approximately

25% higher throughput compared to FDBKeeper. In the write-only

scenario, that is, at 0% read, the throughput of FDBKeeper is about

65% higher than ZooKeeper. The experimental results demonstrate

that ZooKeeper exhibits superior read performance, making it suit-

able for scenarios where read operations signiÿcantly outnumber

write operations, such as in conÿguration management. FDBKeeper

is better suited for scenarios with write requirements, such as log

synchronization. This result arises from FDBKeeper’s storage sys-

tem, FDB, which shards transaction processing and storage across

multiple physical nodes, leading to enhanced write performance.

In contrast, ZooKeeper processes requests exclusively through the

primary node. However, each replica node of ZooKeeper is a full

replica, and in a 5-node deployment, all 5 ZooKeeper instances pro-

vide read-only services. FDB, on the other hand, has a maximum

of 3 replicas, which limits performance FDBKeeper in read-only

scenarios.

The goal of FDBKeeper is to replace the ZooKeeper service in

ClickHouse clusters. ClickHouse, which uses ZooKeeper as its meta-

data repository, handles more write requests compared to a typi-

cal coordination service, with a read/write ratio of approximately

6:3 [44]. This experiment evaluates the performance of FDBKeeper

in ClickHouse by simulating this workload. The percentages of

operations in the experiment were 60% Get, 6% List, 11% Set, 11%

Create, and 11% Remove. The experimental results are illustrated

in Figure 11. FDBKeeper can handle greater concurrency on the

same hardware, oÿering better latency and throughput in high-

concurrency scenarios. This is primarily because (1) under high

concurrency, the design of FDBKeeper leverages the FDB capability

to execute transactions concurrently, enhancing its performance. (2)

Under low concurrency, although the commit time of an FDB trans-

action exceeds the execution time of ZooKeeper, FDBKeeper also

maximizes concurrency while ensuring correct FIFO order through

a ÿne-grained lock design. The overall CPU usage of ZooKeeper

reaches its maximum limit under increasing concurrency, primar-

ily due to a single-point bottleneck, where all operations are exe-

cuted sequentially. The memory footprint of FDBKeeper is much

smaller than that of ZooKeeper. It should be noted that the memory

reported in our experiments refers to the memory usage of the

FDB servers. This experiment demonstrates that FDBKeeper can

eÿectively replace ZooKeeper and support larger-scale ClickHouse

cluster deployments.

To verify the performance of FDBKeeper under diÿerent work-

loads, we conducted performance comparison experiments using

ÿve YCSBworkloads.Workloads A, B, C, D, and F employ the default

Zipÿan access patternwith a Zipÿan value of 0.99. The experimental

setup remains the same as described above. Figure 12 demonstrates

the experimental results. It is crucial to note that YCSB-B (95% read),

YCSB-C (read-only), and YCSB-D (95% read) are workloads with

more reads than writes. On the read-only YCSB-C workload, FDB-

Keeper’s throughput has decreased by as much as 7.8%. For YCSB-B

and YCSB-D, FDBKeeper demonstrates slightly lower throughput

than ZooKeeper. When the proportion of reads is higher, the ex-

perimental results align with those discussed in Figure 10. Our

evaluation shows that FDBKeeper outperforms ZooKeeper for both

YCSB-A and YCSB-F workloads. The throughput performance has

increased by 127.9% and 82.7%, respectively, as shown in Figure 12.

The reasons for its performance diÿerences are also consistent with

those shown in Figure 10.

6.3 Scalability

Scalability is a challenge for ZooKeeper, primarily due to its single-

primary architecture, which limits horizontal scaling. We evaluated

the impact of FDBKeeper and ZooKeeper on the throughput, latency,

and resource consumption of the entire cluster as the number of

cluster nodes increased. The number of nodes and the correspond-

ing relationship between the conÿgurations in the experiment are

shown in Table 1. FDB utilizes a maximum of one CPU core per

process, resulting in multiple processes launched on a single node

during deployment. However, the ÿrst node has two fewer stor-

age processes because it starts the coordinator process. All other

nodes deploy 1 transaction, 6 storage, and 2 stateless processes. In

a single-node deployment, the cluster utilizes a single replica; for

deployments with three or more nodes, FDB employs three replicas.

ZooKeeper restricts voting to the ÿrst 3 nodes, and the remaining

nodes are conÿgured in the observer role and do not participate

in voting. In this section, we use the ClickHouse workload [44] to

evaluate the scalability.

In a single-node deployment, ZooKeeper shows double the through-

put of FDBKeeper, and its standalone performance signiÿcantly

surpasses that of FDBKeeper as shown in Figure 13. In cluster de-

ployments with more than 3 nodes, ZooKeeper faces limitations

due to a single-point bottleneck. In scenarios dominated by write

operations, enhancing overall system throughput by adding ob-

server nodes proves challenging. FDBKeeper demonstrates linear

throughput growth as the number of nodes increases, oÿering su-

perior performance in large-scale deployments. Regarding resource

usage, ZooKeeper’s CPU and memory resources increase linearly

with the number of nodes. The memory footprint of FDBKeeper

remains stable because, in larger FDB deployments, the increase



Table 1: Scalability experiment conÿgurations.

FDB ZooKeeper

Nodes Replicas Transaction Storage Stateless Leader Follower Observer

1 1 1 4 2 1 0 0

3 3 3 16 6 1 2 0

5 3 5 28 10 1 2 2

7 3 7 40 14 1 2 4

9 3 9 52 18 1 2 6

11 3 11 64 22 1 2 8

1 3 5 7 9 11
�umber of �odes

0
10
20
30
40
50

T
hr

ou
gh

pu
t (

ko
ps

)

FDBKeeper
ZooKeeper

(a) Throughput

1 3 5 7 9 11
�umber of �odes

0.00

0.02

0.04

0.06

0.08

L
at

en
cy

 (s
)

(b) Latency

1 3 5 7 9 11
�umber of �odes

0

10

20

30

C
PU

 U
til

iz
at

io
n

(c) CPU Utilization

1 3 5 7 9 11
�umber of �odes

0
10
20
30
40
50
60
70

M
em

or
y 

U
sa

ge
 (G

B
)

(d) Memory Usage

Figure 13: Performance comparison of scalability.

in the number of processes reduces the workload (i.e., shards) han-

dled by each, maintaining a consistent memory footprint. This is

primarily because the design of FDBKeeper fully leverages FDB’s

scalability, including its ability to execute transactions concurrently

and partition-based storage. As a result, it is worth noting that

FDBKeeper inherits the near-linear scalability of FDB [19].

6.4 Bulk Loading

This experiment compares the time and resource consumption of

FDBKeeper and ZooKeeper during bulk loading operations. The

experiment simulated the load process for 800 clients simultane-

ously, bulk loading data sizes of 50, 100, 200, 300, 400, and 500 MB,

respectively. These data are generated by keeper-bench and each

data entry per node is 128 bytes.

Figure 14 (a) illustrates that the bulk loading time for both FDB-

Keeper and ZooKeeper increases linearly with the size of the data,

but FDBKeeper exhibits a relatively lower growth rate. For data

sizes exceeding 500MB, FDBKeeper demonstrates approximately

14% faster performance than ZooKeeper. The CPU and memory us-

age represent the peak values recorded during a single experiment.

In terms of CPU utilization, FDBKeeper utilizes nearly all avail-

able CPU resources, whereas ZooKeeper utilizes approximately

15 cores. This is primarily because FDB distributes writes across

multiple nodes, while ZooKeeper primarily performs writes on

a single primary node. FDBKeeper consumes less memory than

ZooKeeper, as shown in Figure 14 (c). Based on the experimental

ÿndings above, FDBKeeper can utilize additional CPU resources to

achieve faster speeds during bulk loading, eÿectively overcoming

the limitations of single-point bottlenecks. However, FDBKeeper

exhibits higher write ampliÿcation and occupies 3× more storage

space than ZooKeeper. This is primarily due to (1) path redundancy

introduced by ÿattening the tree structure of znode into key-value

pairs, requiring full path storage rather than node names alone; (2)

FDB’s write operations generating substantial amounts of WALs

and incurring the cost of maintaining the B-tree, which directly

leads to write ampliÿcation in FDBKeeper. In contrast, ZooKeeper

temporarily reduced storage usage during bulk loading by disabling

the snapshot mechanism and retaining only the log persistence

process. However, these storage overheads provide a signiÿcant

improvement in write throughput, overcoming the bottleneck of

the single-writer architecture through multi-node parallel process-

ing and leading to notable performance gains in high-concurrency

scenarios. More importantly, FDBKeeper’s distributed architecture,

based on FDB, supports horizontal scalability of storage and is not

limited by the capacity of a single node, which is crucial for large-

scale metadata management scenarios. In contrast, ZooKeeper is

limited by the memory and disk capacity of a single node.

It is also worth noting that, although FDBKeeper exhibits a sig-

niÿcant increase in storage usage, the bulk loading completion

time does not increase. The main reason lies in the architectural

diÿerences between the two systems. Zookeeper processes write re-

quests serially through a single leader node, so all write operations

must be committed sequentially, which limits overall throughput.

In contrast, FDBKeeper, built on FDB, can distribute write opera-

tions concurrently across multiple storage nodes, fully leveraging

the parallelism of the distributed storage system. As a result, it

signiÿcantly reduces the total time required for bulk loading.

In terms of resource utilization, our experimental results show

that FDBKeeper can fully utilize all available CPU resources. In

contrast, ZooKeeper can only use approximately 15 cores due to

its single-writer architecture limitations. Interestingly, although

FDBKeeper has higher storage usage, its memory consumption is

lower than that of ZooKeeper, which indicates that FDBKeeper

has certain advantages in terms of memory usage eÿciency. In

the metadata management scenario, the trade-oÿ between storage

and performance is reasonable, as metadata typically constitutes

only a small portion of the total data volume, while performance

improvement is critical for the rapid restart of the cluster.

6.5 Hardware Resource Cost at Moqi

To demonstrate the cost eÿcacy of our study, this section reports

a detailed case study of the production environment at Moqi Inc.

Each ClickHouse cluster requires a ZooKeeper cluster with three

nodes. In contrast, with FDBKeeper, multiple ClickHouse clusters

can share a single FDB cluster and allocate resources as needed. Our

objective is to compare the hardware resource costs of replacing

ZooKeeper with FDBKeeper in ClickHouse clusters of varying de-

ployment sizes at Moqi Inc. The experimental results are illustrated

in Figure 15, where C1, C2, C3, and C4 represent 40, 60, 80, and 100

ClickHouse clusters, respectively. The cost of resources is assessed

based on the resources utilized by a single ZooKeeper cluster. For

example, compared to ZooKeeper, the resource that supports the

stable running of the cluster in the FDB cluster for C2 (60 Click-

House clusters equipped with 60 ZooKeeper clusters) is roughly

equivalent to 40 ZooKeeper clusters. It is evident that, when en-

abling a ClickHouse cluster of the same scale, FDBKeeper requires

fewer resources than ZooKeeper, reducing hardware resource costs

by an average of 33%, which directly reduces the monetary cost at

Moqi Inc. This enables FDBKeeper to serve as a replacement for

ZooKeeper in large-scale production environments.

6.6 Throughput with Failure at Moqi

In this section, we evaluate the fault tolerance capabilities of ZooKeeper

and FDBKeeper when subjected to the fault scenarios using Moqi’s

production workload with a read-to-write ratio of 6:4 (60% reads,

40% writes). For both ZooKeeper and FDBKeeper, we utilized the

nine-node conÿguration. For ZooKeeper, we designated node 1

as the leader, nodes 2-3 as followers, and nodes 4-9 as observers.



50100 200 300 400 500
Data Size (MB)

0

100

200

300

400

500

Ti
m

e 
(s

)

FDBKeeper
ZooKeeper

(a) Time

50100 200 300 400 500
Data Size (MB)

12

14

16

18

20

C
PU

 U
til

iz
at

io
n 

(c
or

e)

(b) CPU Utilization

50100 200 300 400 500
Data Size (MB)

10
15
20
25
30
35
40
45

M
em

or
y 

U
sa

ge
 (G

B
)

(c) Memory Usage

50100 200 300 400 500
Data Size (MB)

0

3

6

9

12

15

St
or

ag
e 

U
sa

ge
 (G

B
)

(d) Storage Usage

Figure 14: Performance comparison of bulk loading.

C1 C2 C3 C4
ClickHouse Clusters

0
20
40
60
80

100

R
es

ou
rc

e 
C

os
t

ZooKeeper
FDBKeeper

Figure 15: Resource cost com-

parison.

0 100 200 300 400 500 600 700
Time (seconds)

0

10

20

30

40

T
hr

ou
gh

pu
t (

ko
ps

) e1 e2 e3 e4 e5 e6 e7e8 e9 e10 e11e12

f1 f2 f3 f4 f5

f6

f7 f8

FDBKeeper ZooKeeper

Figure 16: Throughput under failure.

For FDB, we conÿgured node 1 with one coordinator process, 1

transaction process, and 4 storage processes. Nodes 2-9 were each

conÿgured with 1 transaction process, 6 storage processes, and 2

stateless processes. Additionally, we use three replica settings for

FDBKeeper. Detailed experimental conÿgurations are presented

in Table 1. For the ZooKeeper evaluation, we have injected ÿve

distinct failure events [35]: (1) failure and subsequent recovery of

node 2 (i.e., 51, 52); (2) failure and subsequent recovery of node 3

(i.e., 53, 54); (3) simultaneous failure of node 2 and node 3, followed

by their recovery (i.e., 55, 56); (4) failure of node 1 (i.e., 57); (5) re-

covery of node 1 (i.e., 58). Similarly, for FDBKeeper, we have also

injected seven failure events: (1) failure and subsequent recovery

of the transaction process on node 2 (i.e., 41, 42); (2) failure and

subsequent recovery of the transaction process on node 3 (i.e., 43,

44); (3) simultaneous failure of the transaction processes on node

2 and node 3, followed by their recovery (i.e., 45, 46); (4) failure

of the busy storage node, followed by its recovery (i.e., 47, 48); (5)

failure of node 2, followed by its recovery (i.e., 49, 410); (6) failure

of the coordinator process on node 1 (i.e., 411); (7) recovery of the

coordinator process on node 1 (i.e., 412).

The experimental results are illustrated in Figure 16. The through-

put data is sampled every 2 seconds. The experimental results

demonstrate that FDBKeepermaintains signiÿcantly higher through-

put than ZooKeeper when operating under failure conditions.When

the transaction process of a node fails (e.g., 41, 43, 45), FDBKeeper ex-

periences a reduction in throughput. This is primarily because each

transaction requires consensus among three transaction processes

before it can be committed. When a transaction process fails, cer-

tain transactions are temporarily blocked from committing, causing

a measurable decrease in system throughput. These pending trans-

actions can resume committing only after the cluster reallocates

and selects three transaction processes. When the busy storage

process fails (i.e., 47, 48), the throughput is barely aÿected. This is

primarily because the FDBKeeper uses a three-replica conÿgura-

tion, which distributes metadata partition replicas across distinct

storage nodes. Consequently, this architecture ensures metadata

integrity during storage node failures while maintaining stable

throughput performance under failure. When node 2 fails (i.e., 49),

we observe a signiÿcant degradation in system throughput (i.e., 410).

This occurs primarily because node 2 hosts 1 transaction process, 2

stateless processes, and 6 storage processes. The failure of stateless

processes produces no measurable impact on system performance.

The critical factor is that both transaction and storage processes

enter a failure state. This cause is the same as transaction or storage

process failures. When the coordinator process of a node fails (i.e.,

411), throughput is almost unaÿected (i.e., 412). This is primarily

because the FDB client directly sends transactions and storage re-

quests, so a temporary failure in the coordinator does not impact

throughput.

In ZooKeeper, when a follower failure occurs (e.g., 51, 53), its

throughput changes, which has the same impact as the transaction

process of FDBKeeper. When the followers recover (e.g., 52, 54),

the leader is re-elected, reducing throughput during the process.

When both followers fail (i.e., 55), the entire system stops serving.

After recovery, a new leader is elected to resume service (i.e., 56).

After the leader is killed (i.e., 57), the throughput does not drop to

zero. In a ZooKeeper cluster with = nodes, at least (=/2) + 1 nodes

are required to form a quorum and provide services. Therefore,

the 2-node cluster votes for a new leader and continues providing

services (i.e., 58).

FDBKeeper is built on top of FDB, so failure recovery in FDB-

Keeper is handled by FDB. FDB provides robust high availability

and failure recovery capabilities, addressing process failure, node

failure, network partitioning, cascading failures, and more. This is

one of the reasons we chose FDB to implement the coordination

service. The cluster controller (CC) plays a pivotal role in the FDB

recovery process. It acts as the leader, elected by the coordinators,

and determines whether recovery should be triggered. The failure

recovery process of FDB consists of four stages: (1) Reading and

locking the coordinated state. In this phase, the coordinated

state (i.e., conÿgurations of the transaction system) is read from

the coordinators. The coordinated state (cstate) is locked to ensure

that only one CC can modify it. (2) Recovering previous trans-

action system states. In this phase, the active transaction logs

are collected, and all roles are informed of the recovery details,

triggering the recovery process when necessary. (3) Writing the

coordinated state. The coordinators store the transaction system’s

information. The CC needs to write the new transaction logs into

the coordinators’ states to ensure consensus and fault tolerance.

(4) Accepting new transactions. Finally, the transaction system

starts to accept new transactions. The CC waits for all transaction

logs to join the system and for all storage servers to roll back their

prefetched uncommitted data before declaring the system fully re-

covered. Details of FDB failure recovery are available in [14, 16, 51].



6.7 Discussion

The motivation behind this work was to explore the implementa-

tion of a coordination service based on a distributed key-value data-

base to address the issue in ZooKeeper, particularly the bottleneck

caused by its single-writer architecture. However, we found that

FDBKeeper suÿers from performance degradation (e.g., throughput)

in high-conÿict scenarios, such as when multiple clients concur-

rently and frequently modify the same key.As a result, the current

design of FDBKeeper primarily addresses performance issues in

high-concurrency scenarios. In the future, we aim to resolve the

performance issues in high-conÿict scenarios within the current

coordination service. The current design of FDBKeeper, based on

high-concurrency distributed databases, makes it possible to solve

this issue. One promising approach is to reduce transaction latency

by optimizing the conÿict validation process in concurrency control,

thereby improving throughput in high-conÿict scenarios.

7 DEPLOYMENT EXPERIENCES

We derived three lessons from our deployment of FDBKeeper.

System conÿguration and maintenance. Our deployment expe-

rience reveals that optimal conÿguration requires balancing two

layers: FDB’s system parameters and ZooKeeper-compatible op-

erational parameters. We extract representative workloads from

production clusters for systematic stress testing, focusing on key

metrics including read-to-write ratios, the degree of concurrency,

throughput, latency, CPU utilization, memory, and storage usage.

We use these stress test results to guide and validate our conÿg-

uration tuning process. We found that starting with FDB’s rec-

ommended conÿgurations [15] and iteratively tuning FDBKeeper-

speciÿc parameters (e.g., session timeout) based on actual workload

characterization yields the best results for most deployments.

Upgrade andmigration. In our production deployment, we imple-

mented a rapid migration strategy to minimize service disruption.

The migration process commences by transitioning the ZooKeeper

cluster to read-only mode while concurrently initiating high per-

formance bulk loading to transfer data to FDBKeeper. During this

brief migration window, incoming write requests are rejected with

retryable error responses. Upon successful completion of data mi-

gration and veriÿcation, we execute a traÿc switchover, redirect-

ing all client requests from ZooKeeper to FDBKeeper. The migra-

tion process typically occurs during the business’s oÿ-peak pe-

riod, minimizing the impact on the business. Although this mi-

gration approach necessitates a maintenance window, our high-

concurrency bulk loading optimization ensures minimal service

disruption throughout the migration process.

Monitoring and debugging. FDBKeeper provides comprehen-

sive observability through integrated monitoring and debugging

capabilities. At the metrics layer, FDBKeeper seamlessly integrates

both ZooKeeper-compatible monitoring tools (e.g., 4-letter words

command [13]) and FDB’s native metrics using status json from

fdbcli [18] for system insights. In our production deployments, we

also utilize Prometheus to capture and calculate all monitoring

indicators, while Grafana further aggregates and visualizes the op-

erational metrics [3]. Key monitoring dimensions include client-

and server-side latency (p50, p95, p99), throughput, client busy-

ness, CPU utilization, memory, and storage usage. This monitoring

stack has proven eÿective in identifying performance anomalies

and maintaining SLA compliance across large-scale deployments.

FDBKeeper captures client operation events (e.g., Set, Get) and

their execution status, while monitoring system metrics to detect

performance anomalies.

8 RELATED WORKS

Coordination Services. Google Chubby [24] is a distributed lock-

ing service that oÿers coarse-grained locking and reliable shared

storage for small ÿles. ZooKeeper [35] is another prominent dis-

tributed coordination service similar to Chubby, employing a single-

primary architecture. The diÿerence lies in ZooKeeper being based

on the highly available primary backup protocol Zab [36], allowing

all replica nodes to oÿer read services while ensuring sequential con-

sistency of write operations. ZooKeeper is extensively employed

in the industry. Etcd [31] is also a popular coordination service

with a primary backup architecture, but it provides a simpler KV

model. Consul [33] divides the coordinated service data into mul-

tiple shards, each with an independent primary node, which is

equivalent to the deployment of multiple coordination service clus-

ters to balance write requests. However, this approach lacks con-

sistency guarantees across shards. ZooNet [37] further ensures

consistency across multiple clusters based on a coordination ser-

vice. Furthermore, ClickHouse rebuilds ZooKeeper based on the

raft protocol [42] to mitigate the single-point bottleneck [44]. FaaS-

Keeper [27] is a ZooKeeper-based serverless coordination service

with native cloud services and servers.

Hierarchical Namespace Approaches. Recent research attempts

to take advantage of databases by managing metadata using KV

databases to achieve scalability and high performance [29]. In-

dexFS [43] was the ÿrst to utilize the LSM tree-based KV database

to store ÿle system metadata, using directory IDs and ÿle name

hashes as keys and ÿle names, attributes, data mappings, and small

ÿles as values. Similarly, Ceph [22] also adopts a similar strategy.

In HDFS [45], the NameNode cluster manages the HDFS metadata.

HopeFS [41] replaces the NameNode in HDFS with NewSQL to

alleviate the single-point bottleneck. To maximize the performance

of KV databases, some studies further optimize the mapping of

metadata to KV pairs for diÿerent ÿle systems [38–40, 48–50]. The

hierarchical namespace model of ZooKeeper is similar to that of

ÿle systems.

9 CONCLUSION

In this paper, we introduce FDBKeeper, which enables a scalable

coordination service based on the FDB. We implement key-value-

based hierarchical namespace management and session manage-

ment, which are key components of ZooKeeper. We also implement

the consistency guarantee based on the transaction of FDB. In ad-

dition, we have conducted correctness analysis and experimental

evaluation of the FDBKeeper. Extensive experiments demonstrate

better performance and scalability in a cluster environment. We

successfully replaced ZooKeeper with FDBKeeper in the production

environment at Moqi Inc.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful comments.

This work was supported in part by the National Natural Science

Foundation of China under Grant No. U22B2020. Peng Cai is the

corresponding author.



REFERENCES
[1] 2021. KRaft. https://kafka.apache.org
[2] 2023. ClickHouse. https://github.com/ClickHouse/ClickHouse
[3] 2023. Grafana. Retrieved in March, 2023 from https://grafana.com/.
[4] 2023. Node Exporter. Retrieved in March, 2023 from https://github.com/

prometheus/node_exporter.
[5] 2023. Prometheus. Retrieved in March, 2023 from https://prometheus.io/.
[6] 2023. RaftKeeper. Retrived in May, 2023 from https://github.com/JDRaftKeeper/

RaftKeeper.
[7] 2024. FoundationDB Consistency. Retrived in Sep, 2024 from https://apple.github.

io/foundationdb/consistency.html,.
[8] 2024. Prometheus Pushgateway. Retrieved in September, 2024 from https:

//github.com/prometheus/pushgateway.
[9] 2024. system-tables-zookeeper. Retrived in May, 2024 from https://clickhouse.

com/docs/en/operations/system-tables/zookeeper.
[10] 2024. YugabyteDB - the cloud native distributed SQL database for mission-critical

applications. Retrieved in September, 2024 from https://www.yugabyte.com/.
[11] 2024. ZooKeeper: A Distributed Coordination Service for Distributed Appli-

cations. Retrieved in September, 2024 from https://zookeeper.apache.org/doc/
current/zookeeperOver.html.

[12] 2024. ZooKeeper-watch. Retrived in May, 2024 from https://zookeeper.apache.
org/doc/r3.9.1/zookeeperProgrammers.html#ch_zkWatches.

[13] 2025. 4 letter words command of ZooKeeper. Retrieved in May, 2025 from https:
//zookeeper.apache.org/doc/r3.9.1/zookeeperAdmin.html#sc_zkCommands.

[14] 2025. Cluster Coordination. Retrieved in May, 2025 from https://github.com/
apple/foundationdb/wiki/Cluster-Coordination.

[15] 2025. Conÿguration. Retrieved in May, 2025 from https://apple.github.io/
foundationdb/conÿguration.html.

[16] 2025. FDB Recovery Internals. Retrieved in May, 2025 from https://github.com/
apple/foundationdb/blob/main/design/recovery-internals.md.

[17] 2025. Known Limitations - FoundationDB. Retrived in January, 2024 from
https://apple.github.io/foundationdb/known-limitations.html.

[18] 2025. Machine-Readable Status. Retrieved in May, 2025 from https://apple.github.
io/foundationdb/mr-status.html.

[19] 2025. Performance of FoundationDB. Retrieved in June, 2025 from https://apple.
github.io/foundationdb/performance.html.

[20] 2025. Proof of Linearizability in FDBKeeper. Retrived in January,
2025 from https://github.com/DASE-iDDS/FDBKeeper/blob/main/FDBKeeper_
Theorem_Proof.pdf.

[21] 2025. YCSB - Yahoo! Cloud Serving Benchmark. Retrieved in May, 2025 from
https://github.com/brianfrankcooper/YCSB.

[22] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gregory R Ganger,
and George Amvrosiadis. 2019. File systems unÿt as distributed storage back-
ends: lessons from 10 years of Ceph evolution. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles. 353–369.

[23] Eric Brewer. 2017. Spanner, truetime and the cap theorem. Google Research
(2017).

[24] Mike Burrows. 2006. The Chubby lock service for loosely-coupled distributed
systems. In Proceedings of the 7th symposium on Operating systems design and
implementation. 335–350.

[25] ByteDance. 2023. ByConity. https://github.com/ByConity/ByConity
[26] Yuxing Chen, Anqun Pan, Hailin Lei, Anda Ye, Shuo Han, Yan Tang, Wei Lu,

Yunpeng Chai, Feng Zhang, and Xiaoyong Du. 2024. TDSQL: Tencent Distributed
Database System. 17, 12 (2024), 3869 – 3882. https://doi.org/10.14778/3685800.
3685812

[27] Marcin Copik, Alexandru Calotoiu, Pengyu Zhou, Konstantin Taranov, and
Torsten Hoeÿer. 2022. FaaSKeeper: Learning from Building Serverless Services
with ZooKeeper as an Example. arXiv preprint arXiv:2203.14859 (2022).

[28] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, et al. 2016. The snowÿake elastic data warehouse. In Proceed-
ings of the 2016 International Conference on Management of Data. 215–226.

[29] Hao Dai, Yang Wang, Kenneth B Kent, Lingfang Zeng, and Chengzhong Xu.
2022. The state of the art of metadata managements in large-scale distributed ÿle
systems—scalability, performance and availability. IEEE Transactions on Parallel
and Distributed Systems 33, 12 (2022), 3850–3869.

[30] Pavan Edara and Mosha Pasumansky. 2021. Big metadata: when metadata is big
data. Proceedings of the VLDB Endowment 14, 12 (2021), 3083–3095.

[31] etcd. 2023. Etcd. Retrived in May, 2023 from https://github.com/etcd-io/etcd.
[32] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C Arpaci-Dusseau, and

Remzi HArpaci-Dusseau. 2021. Strong and eÿcient consistencywith consistency-
aware durability. ACM Transactions on Storage (TOS) 17, 1 (2021), 1–27.

[33] hashicorp. 2023. Consul. https://github.com/hashicorp/consul
[34] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu

Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[35] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and Benjamin Reed. 2010.
{ZooKeeper}: Wait-free coordination for internet-scale systems. In 2010 USENIX
Annual Technical Conference (USENIX ATC 10).

[36] Flavio P Junqueira, Benjamin C Reed, and Marco Seraÿni. 2011. Zab: High-
performance broadcast for primary-backup systems. In 2011 IEEE/IFIP 41st Inter-
national Conference on Dependable Systems & Networks (DSN). IEEE, 245–256.

[37] Kÿr Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer. 2016. Mod-
ular composition of coordination services. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16). 251–264.

[38] Siyang Li, Fenlin Liu, Jiwu Shu, Youyou Lu, Tao Li, and Yang Hu. 2018. A ÿattened
metadata service for distributed ÿle systems. IEEE Transactions on Parallel and
Distributed Systems 29, 12 (2018), 2641–2657.

[39] Siyang Li, Youyou Lu, Jiwu Shu, Yang Hu, and Tao Li. 2017. Locofs: A loosely-
coupled metadata service for distributed ÿle systems. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 1–12.

[40] Wenhao Lv, Youyou Lu, Yiming Zhang, Peile Duan, and Jiwu Shu. 2022.
{InÿniFS}: An eÿcient metadata service for {Large-Scale} distributed ÿlesys-
tems. In 20th USENIX Conference on File and Storage Technologies (FAST 22).
313–328.

[41] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steÿen Grohsschmiedt,
and Mikael Ronström. 2017. {HopsFS}: Scaling hierarchical ÿle system metadata
using {NewSQL} databases. In 15th USENIX Conference on File and Storage
Technologies (FAST 17). 89–104.

[42] Diego Ongaro and John Ousterhout. 2014. In search of an understandable
consensus algorithm. In 2014 USENIX annual technical conference (USENIX ATC
14). 305–319.

[43] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson. 2014. IndexFS: Scaling
ÿle system metadata performance with stateless caching and bulk insertion. In
SC’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 237–248.

[44] Tom Schreiber and Derek Chia. [n.d.]. ClickHouse Keeper: A ZooKeeper Alternative
Written in C++. https://clickhouse.com/blog/clickhouse-keeper-a-zookeeper-
alternative-written-in-cpp

[45] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The hadoop distributed ÿle system. In 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). Ieee, 1–10.

[46] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. 2020. Database System
Concepts, Seventh Edition. McGraw-Hill Book Company. https://www.db-
book.com/

[47] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. 2020.
Cockroachdb: The resilient geo-distributed sql database. In Proceedings of the
2020 ACM SIGMOD international conference on management of data. 1493–1509.

[48] Houjun Tang, Suren Byna, Bin Dong, Jialin Liu, and Quincey Koziol. 2017. Someta:
Scalable object-centric metadata management for high performance computing.
In 2017 IEEE International Conference on Cluster Computing (CLUSTER). IEEE,
359–369.

[49] TengWang, AdamMoody, Yue Zhu, Kathryn Mohror, Kento Sato, Tanzima Islam,
and Weikuan Yu. 2017. Metakv: A key-value store for metadata management
of distributed burst buÿers. In 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 1174–1183.

[50] Yiwen Zhang, Jian Zhou, Xinhao Min, Song Ge, Jiguang Wan, Ting Yao, and
Daohui Wang. 2022. PetaKV: Building Eÿcient Key-Value Store for File System
Metadata on Persistent Memory. IEEE Transactions on Parallel and Distributed
Systems 34, 3 (2022), 843–855.

[51] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan
Tschannen, Steve Atherton, Andrew J Beamon, Rusty Sears, John Leach, et al.
2021. Foundationdb: A distributed unbundled transactional key value store. In
Proceedings of the 2021 International Conference on Management of Data. 2653–
2666.


